1 Given that $\sin \theta=\frac{\sqrt{3}}{4}$, find in surd form the possible values of $\cos \theta$.

2 (i) Show that the equation $\frac{\tan \theta}{\cos \theta}=1$ may be rewritten as $\sin \theta=1-\sin ^{2} \theta$.
(ii) Hence solve the equation $\frac{\tan \theta}{\cos \theta}=1$ for $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$.

3 Show that the equation $4 \cos ^{2} \theta=1+\sin \theta$ can be expressed as

$$
4 \sin ^{2} \theta+\sin \theta-3=0 .
$$

Hence solve the equation for $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$.

4 Showing your method clearly, solve the equation

$$
\begin{equation*}
5 \sin ^{2} \theta=5+\cos \theta \quad \text { for } 0^{\circ} \leqslant \theta \leqslant 360^{\circ} . \tag{5}
\end{equation*}
$$

5 You are given that $\sin \theta=\frac{\sqrt{2}}{3}$ and that $\theta$ is an acute angle. Find the exact value of $\tan \theta$.

6 Solve the equation $\sin 2 x=-0.5$ for $0^{\circ}<x<180^{\circ}$.

7 You are given that $\tan \theta=\frac{1}{2}$ and the angle $\theta$ is acute. Show, without using a calculator, that $\cos ^{2} \theta=\frac{4}{5}$.

8 Given that $\cos \theta=\frac{1}{3}$ and $\theta$ is acute, find the exact value of $\tan \theta$.

9


Fig. 3
Beginning with the triangle shown in Fig. 3, prove that $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$.

10 (i) Sketch the graph of $y=\cos x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
On the same axes, sketch the graph of $y=\cos 2 x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$. Label each graph clearly.
(ii) Solve the equation $\cos 2 x=0.5$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

11 (i) Solve the equation $\cos x=0.4$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
(ii) Describe the transformation which maps the graph of $y=\cos x$ onto the graph of $y=\cos 2 x$.

12 (i) Sketch the graph of $y=\tan x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
(ii) Solve the equation $4 \sin x=3 \cos x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

